The complexity of the fermionant, and immanants of constant width

نویسندگان

  • Stephan Mertens
  • Cristopher Moore
چکیده

In the context of statistical physics, Chandrasekharan and Wiese recently introduced the fermionant Fermk, a determinant-like function of a matrix where each permutation π is weighted by −k raised to the number of cycles in π . We show that computing Fermk is #P-hard under polynomial-time Turing reductions for any constant k > 2, and is ⊕P-hard for k = 2, where both results hold even for the adjacency matrices of planar graphs. As a consequence, unless the polynomial-time hierarchy collapses, it is impossible to compute the immanant Immλ A as a function of the Young diagram λ in polynomial time, even if the width of λ is restricted to be at most 2. In particular, unless NP⊆ RP, Ferm2 is not in P, and there are Young diagrams λ of width 2 such that Immλ is not in P. ACM Classification: F.2.1 AMS Classification: 68Q17

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinant versus Permanent: salvation via generalization? The algebraic complexity of the Fermionant and the Immanant

The fermionant Fermn(x̄) = ∑ σ∈Sn (−k)c(π) ∏n i=1 xi,j can be seen as a generalization of both the permanent (for k = −1) and the determinant (for k = 1). We demonstrate that it is VNP-complete for any rational k , 1. Furthermore it is #P -complete for the same values of k. The immanant is also a generalization of the permanent (for a Young diagram with a single line) and of the determinant (whe...

متن کامل

Comparison Of Hyperbolic And Constant Width Simultaneous Confidence Bands in Multiple Linear Regression Under MVCS Criterion

‎A simultaneous confidence band gives useful information on the reasonable range of the unknown regression model‎. ‎In this note‎, ‎when the predictor variables are constrained to a special ellipsoidal region‎, ‎hyperbolic and constant width confidence bonds for a multiple linear regression model are compared under the minimum volome confidence set (MVCS) criterion‎. ‎The size of one speical an...

متن کامل

Investigation the Effect of Strengthening Various Subpanels in the SPSPs with Two Rectangular Openings

In the present research, behavior of SPSPs with two rectangular openings and effect of strengthening different subpanels with various stiffener arrangements is investigated. In the next step, to investigate the effect of changing opening width on the trend of degradation shear stiffness and strength of the panel, the opening width is changed. In the third step, to study the effect of changing o...

متن کامل

A2-web immanants

Abstract. We describe the rank 3 Temperley-Lieb-Martin algebras in terms of Kuperberg’s A2-webs. We define consistent labelings of webs, and use them to describe the coefficients of decompositions into irreducible webs. We introduce web immanants, inspired by Temperley-Lieb immanants of Rhoades and Skandera. We show that web immanants are positive when evaluated on totally positive matrices, an...

متن کامل

Complexity and Completeness of Immanants

Immanants are polynomial functions of n by n matrices attached to irreducible characters of the symmetric group Sn, or equivalently to Young diagrams of size n. Immanants include determinants and permanents as extreme cases. Valiant proved that computation of permanents is a complete problem in his algebraic model of NP theory, i.e., it is VNP-complete. We prove that computation of immanants is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theory of Computing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013